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—— Abstract

We describe a parallel approximation algorithm for maximizing monotone submodular functions
subject to hereditary constraints on distributed memory multiprocessors. Our work is motivated by
the need to solve submodular optimization problems on massive data sets, for practical contexts
such as data summarization, machine learning, and graph sparsification.

Our work builds on the randomized distributed RANDGREEDI algorithm, proposed by Barbosa,
Ene, Nguyen, and Ward (2015). This algorithm computes a distributed solution by randomly
partitioning the data among all the processors and then employing a single accumulation step in
which all processors send their partial solutions to one processor. However, for large problems, the
accumulation step exceeds the memory available on a processor, and the processor which performs
the accumulation becomes a computational bottleneck.

Hence we propose a generalization of the RANDGREEDI algorithm that employs multiple accu-
mulation steps to reduce the memory required. We analyze the approximation ratio and the time
complexity of the algorithm (in the BSP model). We evaluate the new GREEDYML algorithm on
three classes of problems, and report results from large-scale data sets with millions of elements. The
results show that the GREEDYML algorithm can solve problems where the sequential GREEDY and
distributed RANDGREEDI algorithms fail due to memory constraints. For certain computationally
intensive problems, the GREEDYML algorithm is faster than the RANDGREEDI algorithm. The
observed approximation quality of the solutions computed by the GREEDYML algorithm closely
matches those obtained by the RANDGREEDI algorithm on these problems.
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1 Introduction

We describe GREEDYML, a parallel approximation algorithm for maximizing monotone
submodular functions subject to hereditary constraints on distributed memory multiprocessors.
GREEDYML is built on an earlier distributed approximation algorithm, which has limited
parallelism and higher memory requirements. Maximizing a submodular function under
constraints is NP-hard, but a natural iterative GREEDY algorithm exists that selects elements
based on the marginal gain (defined later) and is (1 —1/e) ~ 0.63-approximate for cardinality
constraints and 1/2-approximate for matroid constraints; here e is Euler’s number.

Maximizing a submodular function (rather than a linear objective function) promotes
diversity in the computed solution since at each step the algorithm augments its current solu-
tion with an element with the least properties in common with the current solution. A broad
collection of practical problems are modeled using submodular functions, including data and
document summarization [23], load balancing parallel computations in quantum chemistry [9],
sensor placement [6], resource allocation [28], active learning [11], interpretability of neural
networks [8], influence maximization in social networks [13], diverse recommendation [5], etc.
Surveys discussing submodular optimization formulations, algorithms, and computational
experiments include Tohidi et al. [29] and Krause and Golovin [14].

Our algorithm builds on the RANDGREEDI framework [2], a state-of-the-art randomized
distributed algorithm for monotone submodular function maximization under hereditary
constraints, which has an approximation ratio half that of the GREEDY algorithm. The
RANDGREEDI algorithm randomly partitions the data among all the processors, runs the
standard GREEDY algorithm on each partition independently in parallel, and then executes a
single accumulation step in which all processors send their partial solutions to one processor.
However, this accumulation step could exceed the memory available on a processor when the
memory is small relative to the size of the data, or when solutions are large. Additionally,
the accumulation serializes both the computation and communication and is a bottleneck
when scaled to many machines.

Our GREEDYML algorithm brings additional parallelism to this step and can lower the
memory and running time by introducing hierarchical accumulation organized through an
accumulation tree. Similar to RANDGREEDI, we randomly partition the data among all
the processors, which constitute the leaves of the accumulation tree. We merge partial
solutions at multiple levels in the tree, and the final solution is computed at the root. We
prove that the GREEDYML algorithm has a worst-case expected approximation guarantee
of (ab)/(m +b), where « is the approximation guarantee for the GREEDY algorithm, b is
the branching factor in the tree (the maximum number of children of an internal node), and
m is the number of machines (leaves in the accumulation tree). Using the BSP model, we
also analyze the time and communication complexity of the GREEDYML and RANDGREEDI
algorithms and show that the former has lower computation and communication costs than
the latter.

We evaluate the parallel algorithms on three representative and practical submodular
function maximization problems: maximum k-set cover, maximum k-vertex dominating set in
graphs, and exemplar-based clustering (modeled by the k-medoid problem). We experiment
on large data sets with millions of elements that exceed the memory constraints (a few GBs)
on a single processor, and discuss how to choose the accumulation tree to have more levels
to adapt to the small memory available on a processor. This strategy also enables us to
solve for larger values of the parameter k, which corresponds to the size of the solution
sought. We also show that the number of function evaluations on the critical path of the
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accumulation tree, and hence the run time, could be reduced by the parallel algorithm. In
most cases, we find the quality of the solutions computed by GREEDYML closely matches
those obtained by the RANDGREEDI algorithm on these problems despite having a worse
expected approximation guarantee.

2 Background and Related Work

2.1 Submodular functions

A set function f: 2" — R¥, defined on the power set of a ground set W, is submodular if it
satisfies the diminishing marginal gain property. That is,

FXU{w}) = f(X) =z f(YU{w}) = f(Y), foral X CY CW and w € W\ Y.

A submodular function f is monotone if for every X CY C W, we have f(X) < f(Y). The
constrained submodular maximization problem is defined as follows.

max f(S) subject to S € C,where C C 2" is the family of feasible solutions.

We consider hereditary constraints: i.e., for every set S € C, every subset of S is also in
C. The hereditary family of constraints includes various common ones such as cardinality
constraints (C = {A C W :|A| < k}) and matroid constraints (C corresponds to the collection
of independent sets of a matroid).

Lovasz extension. For the analysis of our algorithm, we use the Lovdsz extension [21], a
relaxation of submodular functions. A submodular function f can be viewed as a function
defined over the vertices of the unit hypercube, f: {0,1}" — R™, by identifying sets V' C W

1

with binary vectors of length w = |W/| in which the 7!

o~

otherwise. The Lovdsz extension [21] f :[0,1]* — R is a convex extension that extends f

over the entire hypercube and given by, f(z) = E [ f({i:2; > 0})]. Here, 0 is uniformly
0cu[0,1]

random in [0, 1]. The Lovédsz extension £ satisfies the following properties [21]:

component is 1 if ¢ € V', and 0

~

1. f(1g) = f(5), for all S CV where 15 € [0,1]" is a vector containing 1 for the elements
in S and 0 otherwise,
2. f(x) is convex, and

o~ ~

3. f(c-x) = c- f(z),for any c € [0, 1].

An a-approzimation algorithm (« € [0,1)) for constrained submodular maximization
produces a feasible solution S C W, satisfying f(S) > « - f(S*), where S* is an optimal
solution.

2.2 Related Work

GREEDI and RANDGREEDI. The iterative GREEDY algorithm for maximizing constrained
submodular functions starts with an empty solution. Given any current solution .S, an
element is feasible if it can be added to the solution without violating the constraints. Given
a dataset V' and a current solution S, the GREEDY algorithm in each iteration chooses a
feasible element e € V' that maximizes the marginal gain, f(S'U{e}) — f(S). The algorithm
terminates when the maximum marginal gain is zero or all feasible elements have been
considered.

19:3
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We now discuss the GREEDI and RANDGREEDI algorithms, which are the state-of-
the-art distributed algorithms for constrained submodular maximization. The GREEDI
algorithm [23] partitions the data arbitrarily on available machines, and on each machine,
it runs the GREEDY algorithm independently to compute a local solution. These solutions
are then accumulated to a single global machine. The GREEDY algorithm is executed again
on the accumulated data to obtain a global solution. The final solution is the best solution
among all the local and global solutions. For a cardinality constraint, where k is the solution
size, the GREEDI algorithm has a worst-case approximation guarantee of 1/0(min(vk,m)),
where m is the number of machines.

Although GREEDI performs well in practice [23], its approximation ratio is not a con-
stant but depends on k and m. Improving on this work, Barbosa et al. [2] proposed the
RANDGREEDI algorithm, which partitions the data uniformly at random on machines and
achieves an ezpected approximation guarantee of %(1 —1/e) for cardinality and 1/4 for matroid
constraints. In general, it has an approximation ratio of /2 where « is the approximation
ratio of the GREEDY algorithm used at the local and global machines. We present the
pseudocode of RANDGREEDI framework in Algorithm 1.

Algorithm 1 RANDGREEDI framework for maximizing constrained submodular function.

1: procedure RANDGREEDI(V: Dataset, m: number of machines)

2 S0

3 Let {Po, P1,..., Pn_1} be an uniform random partition of V.

4: Run GREEDY(F;) on each machine ¢ € [0, m — 1] to compute the solution S;
5: Place S = J, Si on machine 0

6: Run GREEDY(S) to compute the solution 7' on machine 0

7 return arg max { f(T), f(S1), f(S2),..., f(Sm-1)}

8:

end procedure

Note that for a cardinality constraint, both GREEDI and RANDGREEDI perform O(nk(k+
m)) calls to the objective function and communicate O(mk) elements to the global machine
where n is the number of elements in the ground set, m is the number of machines, and & is
solution size.

Both GREEDI and RANDGREEDI require a single global accumulation from the solutions
generated in local machines that can quickly become dominating since the runtime, memory,
and complexity of this global aggregation grows linearly with the number of machines. We
propose to alleviate this by introducing a hierarchical aggregation strategy that maintains an
accumulation tree. Our GREEDYML framework generalizes the RANDGREEDI from a single
accumulation to a multi-level accumulation. The number of partial solutions to be aggregated
depends on the branching factor of the tree, which can be a constant. Thus, the number
of accumulation levels grows logarithmically with the number of machines, and the total
aggregation is not likely to become a memory, runtime, and communication bottleneck with
the increase in the number of machines. We refer to Appendix A for the detailed complexity
comparisons of the RANDGREEDI and our GREEDYML algorithm.

Other work. Early approaches on distributed submodular maximization includes the 1/(2 +
g)-approximate SAMPLE AND PRUNE algorithm by Kumar et al. [17], which requires O(1/6)
rounds assuming O(kn® logn) memory per machines. Here, § > 0 is a user parameter.
GREEDI [23] and RANDGREEDI [2] are shown to be more efficient in practice than the
SAMPLE AND PRUNE algorithm.
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More recent distributed approaches [4, 24, 25] use the multi-linear extension to map the
problem into a continuous function. They typically perform a gradient ascent on each local
machine and build a consensus solution in each round, which improves the approximation
factor to (1 — 1/e). However, we do not believe that these approaches are practical since
they involve expensive gradient computations (could be exponential-time). Most of these
algorithms are not implemented, and the one reported implementation solves problems with
only a few hundred elements in the data set [25].

A shared-memory parallel algorithm, the FAST algorithm [3], uses adaptive sequencing
to speed up the GREEDY algorithm. Adaptive sequencing is a technique to add several
elements in one round to the current solution. First, all elements with large marginal gains
with respect to the current solution are selected. They are then randomly permuted, and
prefixes with large average marginal gains are considered. The subset that is added is chosen
to be a largest subset with sufficiently high average marginal gain. These sequencing rounds
are repeated until the solution has the desired cardinality. However, this algorithm does

not scale to larger numbers of machines and does not work in memory-restricted contexts.

Parallelism in this algorithm occurs in setting a number of threshold values to determine
what constitutes a sufficiently large marginal gain.

A more recent algorithm is the distributed DASH algorithm [7], which replaces the
GREEDY algorithm in the RANDGREEDI framework with a similar adaptive sequencing

algorithm. This algorithm has the same memory and processor bottlenecks as RANDGREEDI.

It can be used instead of the greedy algorithm in the GREEDYML framework proposed here.

3 Description of Our Algorithm

We describe and analyze our algorithm that generalizes the RANDGREEDI algorithm from a
single accumulation step to multiple accumulation steps. Each accumulation step corresponds
to a level in an accumulation tree, which we describe next.

3.1 Data Structure and Preliminaries

Accumulation tree. Given a problem and an algorithm to solve it, its memory requirements
(to store the data and associated data structures), and machines of a specified memory
size, we choose the number of machines m needed to solve the problem. We identify the
m machines by the set of ids: {0,1,...,m — 1}. These machines are organized into a tree
structure that we call the accumulation tree, since it governs how local solutions are merged
hierarchically to compute the final solution. Every machine is a leaf in the tree, and the
interior nodes of the tree correspond to subsets of machines. The machine corresponding to
an interior node is the one that corresponds to its left-most child. Figure 1 shows an example
of a generic accumulation tree with b2 leaves, where the maximum number of children of an
interior node, its branching factor, is b. Each node in the tree is identified by a tuple, its
level in the tree, and the ID of the machine corresponding to the node.

The problem is partitioned randomly among the machines (leaves of the tree). The size of
the subset of the data assigned to a machine (and associated data structures) must fit within
the memory available on a machine. Each leaf computes solutions from its subset of the data,
and shares this solution with its parent node. Each interior node collects solutions from its
children, unions them all together, and then computes a solution from this latter data. Every
interior node must also have sufficient memory for the union of solutions from its children. It
then obtains the best solution from among the solutions it received from its children and the
solution it computed at this step, and communicates it to its parent. The root node finally
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2,0 Level 2
1,0 i R RRREERRTEEREE 1,(b=1)b Level 1
0,0 0,1 ] 0,b—1 0,b 0,b+1 {+]0,20—1| [0,b(b—1) |0,6>—b+1f| 0,61 Level 0

Figure 1 An accumulation tree with L = 2 levels, m = b machines, and a branching factor b.
Each node has a label of the form (¢,id). Here there are b nodes as children at each level, but when
there are fewer than b” leaf nodes, then the number of children at levels closer to the root may be
fewer than b.

GREEDY (Piq) =0
) GREEDY U GREEDYML (£ — 1,id +i-b""") ) P
GREEDYML(Z, id) =< arg max €401, b1} id mod b° =0
GREEDYML({ — 1, ¢d)
undefined otherwise

Figure 2 The recurrence relation for the multilevel GREEDYML which is defined for each node in
the accumulation tree. We denote the random subset assigned to machine id by P;q4.

reports the best solution from among the local solutions of its children and the solution it
computed from the union of the local solutions. Thus, the edges of the tree determine the
accumulation pattern of the intermediate solutions. The number of accumulation levels (i.e.,
one minus the height of the tree), denoted by L, is [log, m]. When m is less than b%, nodes
at the higher levels may have fewer than b children. We characterize an accumulation tree T'
by the triple T(m, L,b), where m is the number of leaves (machines), L is the number of
levels, and b is the branching factor.

Observe that the id parameter remains the same in multiple nodes that are involved in
computations at multiple levels. For our analysis, we keep the branching factor constant
across all levels.

Randomness. The randomness in the algorithm is only in the initial placement of the data
on the machines, and we use a random tape to encapsulate this. The random tape 7y has a
randomized entry for each element in W to indicate the machine containing that element.
Any expectation results proved henceforth are over the choice of this random tape. Moreover,
if the data accessible to a node is V', we consider the randomness over just ry. Whenever
the expectation is over ry, we denote the expectation as Ey .

Recurrence relation. Figure 2 shows the recurrence relation that forms the basis of the
GREEDYML algorithm, defined for every node in the accumulation tree; it will be the basis
for the multilevel distributed algorithm. At level 0 (leaves), the recurrence function returns
the GREEDY solution of the random subset of data P;4 assigned to it. At other levels (internal
nodes), it returns the better among the GREEDY solution computed from the union of the
received solution sets of its children and its solution from its previous level. It is undefined
for (¢,id) tuples that do not correspond to nodes in the tree (at higher levels). The detailed
pseudocode of our algorithm is presented in Algorithm 2.
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3.2 Pseudocode of GREEDYML

Algorithm 2 describes our multilevel distributed algorithm using two procedures. The first
procedure GREEDYML is a wrapper function that sets up the environment to run the
distributed algorithm. The second function GREEDYML' is the iterative implementation
of the recurrence relation that runs on each machine. The wrapper function partitions the
data into m subsets and assigns them to the machines (Line 2.Then each machine runs the
GREEDYML' function on the subset assigned to it (Line 5, Line 7. The wrapper function
uses and returns the solution from machine 0 (Line 8) as it is the root of the accumulation
tree.

The GREEDYML' procedure is an iterative implementation of the recurrence relation
2 that runs on every machine. Each machine checks whether it needs to be active at a
particular level (Line 5) and decides whether it needs to receive from (Line 11) or send to

other machines (Line 6). The function returns the solution from the last level of the machine.

Algorithm 2 Our Randomized Multi-level GREEDYMLAlgorithm.

1: procedure GREEDYML(V: Dataset, b: branching factor, m: number of machines, r: random
tape)

2: Let {Po, P1,...Pm—1} be uniform random partition of V' using r.

3: for i =1...m — 1 in parallel do > Run GREEDYML’ on all machines except 0
4: £ = level(i, b) > level (i, b) = mzax{l :id mod b is 0}
5: Run GREEDYML/(V;, £,b,4) to obtain S; on machine i

6: end for

7 Run GREEDYML'(Vj, [log, m], b, 0) to obtain Sy on machine 0

8: return Sy

9: end procedure

1: procedure GREEDYML'(P: Partial Data-set, ¢: levels; b: branching factor, id: machine ID)
2: S = GREEDY(P)

3: Sprev = S

4: fori=1...4do

5: if id # parent(id,i) then

6: Send Sprev to parent(id, i) > parent(id, i) = b* - |id/b’ |
T break

8: end if

9: D = Sprew > Prepare D for current iteration
10: forj=1...b—1do
11: Receive D; from child(id, i, j) > child(id,i,§) = id + j - b *
12: D=DUD;
13: end for
14: Run GREEDY(D) to obtain S
15: Sprev = arg maX{f(S), f(Sprev)}
16: end for
17: return Sp,c,

18: end procedure

4  Analysis of Our Algorithm

We prove the expected approzimation ratio of GREEDYML algorithm in Theorem 4 using
three Lemmas. We restate a result from [2] that applies to the leaves of our accumulation
tree and characterizes elements that do not change the solution computed by the GREEDY
algorithm.

19:7
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» Lemma 1 ([2]). If we have GREEDY (V U{e}) = GREEDY(V), for each element e € B,
then GREEDY(V U B) = GREEDY(V).

The next two Lemmas connect the quality of the computed solutions to the optimal
solution at the internal nodes (in level one) of the accumulation tree. Lemma 2 provides
a lower bound on the expected function value of the individual solutions of the GREEDY
algorithm received from the leaf nodes, while Lemma 3 analyzes the expected function value
of the GREEDY execution over the accumulated partial solutions.

Let p: V — [0, 1] be a probability distribution over the elements in V', and A ~ V(1/m) be
a random subset of V' such that each element is independently present in A with probability
1/m. The probability p is defined as follows:

Pr [e € GREEDY(AU {e})], ife€ OPT;
p(e) = A~V (1/m)
0, otherwise.

For any leaf node, the distribution p defines the probability that each element of OPT is in
the solution of the GREEDY algorithm when it is placed in the node.

» Lemma 2. Let ¢ be a leaf node of the accumulation tree, S. be the solution computed from
¢, and V. CV,, be the elements considered in forming S.. If GREEDY is an a-approzimate

~

algorithm, then Ev, [f(S.)] 2 - f(lopr — D).

Proof. We first construct a subset of OPT that contains all the elements that do not appear
in S, when added to some leaf node in the subtree rooted at child ¢. Let O, be the rejected set
that can be added to V. without changing S.; i.e., O, = {e € OPT : e ¢ GREEDY(V,U{e})}.
Therefore, Prlfe € O] =1 —Prle ¢ O.] =1 — p(e).

From Lemma 1, we know that GREEDY(V. U O.) = GREEDY(V,) . Since the rejected set
O. C OPT and the constraints are hereditary, O, € C (i.e, O, is a feasible solution of child
node ¢). Then from the condition of Lemma 2, we have

f(Se) = a- f(O.)
E[f(sc)] z Q- E[f(OC)] = f(EVn[]-OC]) = f(]‘OPTIZ,id - p@,id)'
<
» Lemma 3. Let D be the union of all the solutions computed by the b children of an internal
node (1,id) in the accumulation tree, and S be the solution from the GREEDY algorithm on
the set D. If GREEDY is an a-approzimate algorithm, then Evy, [f(S)] > 2ra f(p)
m

Proof. We first show a preliminary result on the union set D. Consider an element e €
D NOPT present in some solution S, from a child ¢. Then,

Prle € S.le € V] = Pr[e € GREEDY(V,)|e € V,].

Since the distribution of V, ~ V(1/m) conditioned on e € V, is identical to the distribution
of BU{e}, where B ~ V(1/m), we have,

Prle € Scle e V] = BN‘}D(E/m)[e € GREEDY(B U {e})] = p(e).

Since this result holds for every child ¢, and each subset V. is disjoint from the corres-
ponding subsets mapped to the other children, we have

Pr(e€e DNOPT) = ZPr[e €S, NOPT|e e V,,|Prlec V.,]. = Zp* 1/m = bp/m.
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Now, we are ready to prove the Lemma. The subset D N OPT} ;4 € C, since it is a subset
of OPTy;q and the constraints are hereditary. Further, since the GREEDY algorithm is
a-approximate, we have

f(S) > o f(D N OPT&Z'd)

\

Ev,[f(9)] =2 Ev,[a- f(DNOPT)]
2 - ‘]?(Evn [1DQOPT]) [LOVZ:LSZ Ext. (2)7 21]
=a- f(bp/m) = ab/m - f(p). [Lovész Ext. (3)2.1] (1)

<

» Theorem 4. Let T'(m, L,b) be an accumulation tree, V be the ground set, and ry be a
random mapping of elements of V' to the leaves of the tree T'. Let OPT be an optimal solution
computed from V' for the constrained submodular function f. If GREEDY is an a-approrimate

algorithm, then E [f(GreEDYML(V))] > —% F(OPT),

(m+b)
Proof. We concentrate on a node at level 1, where after obtaining the partial solutions from
the children of this node, we compute the GREEDY on the union of these partial solutions.
Let S. be any of the partial solutions, S be the union of these partial solutions, and 7" be
argmax{ f(5), f(S¢)}. From Lemma 2 and Lemma 3,

BA(T)) > 2 - f(p) and E[f(T)] > a- F(lopr 1),

By multiplying the first inequality by m/b and then adding it to the second, we get

(m/b+ VE[F(T)] > a- (Flopr —p) + F(p)) = a- f(lopr)  [Lovisz Ext. (2),2.1]

o ~
Elf(T)] > ———— - f(1 .

The theorem follows since the solution quality can only improve at higher levels of the
tree. |

5 Experimentation

5.1 Experimental setup

We conduct experiments to demonstrate that our algorithms are capable of overcoming the
memory limitations of the GREEDY and RANDGREEDI algorithms and can solve large-scale
constrained submodular maximization problems. We also compare these algorithms with
respect to runtimes and the quality of solutions.

All the algorithms are executed on a cluster computer with 448 nodes, each of which is
an AMD EPYC 7662 node with 256 GB of total memory shared by the 128 cores. Each core
operates at 2.0 GHz frequency. The nodes are connected with a 100 Gbps HDR Infiniband
network. To simulate a distributed environment on this cluster, we needed to ensure that
the memory is not shared between nodes. Therefore, in what follows, a machine will denote
one node with just one core assigned for computation, but having access to all 256 GB of
memory. We also found that this made the runtime results more reproducible.

For our experimental evaluation, we report the runtime and quality of the algorithms
being compared. For runtime, we exclude the file reading time on each machine, and for
the quality, we show the objective function value of the corresponding submodular function.
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Table 1 Properties of datasets used in the experiments. Here §(u) represents: the number of
neighbors of vertex u for the k-dominating set problem, the cardinality of the subset u for the k-cover
problem, and the size of the vector representation of the pixels of image u for the k-medoid problem.

Function Dataset n=|V| > 0(u)  avg. &(u)
AGATHA_ 2015 183,964,077  11,588,725,964 63.32
MOLIERE_ 2016 30,239,687 6,669,254,694 220.54
k-dominati com-Friendster 65,608,366 1,806,067,135 27.52
ot OMUIAMNE — oad_usa 23,947,347 57,708,624 2.41
road__central 14,081,816 33,866,826 2.41
belgium__ osm 1,441,295 3,099,940 2.14
webdocs 1,692,082 299,887,139 177.22
k-cover kosarak 990,002 8,018,988 8.09
retail 88,162 908,576 10.31
k-medoid Tiny ImageNet | 100,000  1,228,800,000 12,288

Since the RANDGREEDI and GREEDYML are distributed algorithms, we also report the
number of function calls in the critical path of the computational tree, which represents the
parallel runtime of the algorithm. Given an accumulation tree, the number of function calls
in the critical path refers to the maximum number of function calls that the algorithm makes
along a path from the leaf to the root. In our implementation, this quantity can be captured
by the number of function calls made by the nodes of the accumulation tree with id = 0
since this node participates in the function calls from all levels of the tree.

Datasets. In this paper, we limit our experiments to cardinality constraints using three
different submodular functions described in detail in Appendix A. Other hereditary constraints
add more computation to the problem and will greatly increase the run times of the
experiments.

Our benchmark dataset is shown in Table 1. They are grouped based on the objective
function and are sorted by the ) d(u) values within each group (see the Table for a
definition). For the k-dominating set, our testbed consists of the Friendster social network
graph [31], a collection of road networks from DIMACS10 dataset, and the Sybrandt dataset.
We chose road graphs since they have relatively small average vertex degrees, leading to large
vertex-dominating sets. We chose the Sybrandt collection [26][27] since it is a huge data set
of machine learning graphs. For the k-cover objective, we use popular set cover datasets
from the Frequent Itemset Mining Dataset Repository [10]. For the k-medoid problem, we
use the Tiny ImageNet dataset [18].

MPI Implementation. GREEDYML is implemented using C++11, and compiled with
g++9.3.0, using the 03 optimization flag. We use the Lazy Greedy [22] variant that has the
same approximation guarantee as the GREEDY but is faster in practice since it potentially
reduces the number of function evaluations needed to choose the next element (by using the
monotone decreasing gain property of submodular functions). Our implementation of the
GREEDYML algorithm uses the OpenMPI library for inter-node communication. We use the
MPI__Gather and MPI__Gatherv primitives to receive all the solution sets from the children
(Line 11 in Algorithm 2). We generated custom MPI__Comm communicators to enable this
communication using MPI__Group primitives. Customized communicators are required since
every machine has different children at each level. Additionally, we use the MPI_ Barrier
primitive to synchronize all the computations at each level.
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5.2 Experimental Results

The experiments are executed with different accumulation trees that vary in the number
of machines (m), the number of levels (L), and the branching factors (b), to assess their
performance. We repeat each experiment six times and report the geometric mean of the
results. Unless otherwise stated, a machine in our experiments represents a node in the
cluster with only one core assigned for computation. Whenever memory constraints allow,
we compare our results with the sequential GREEDY algorithm that achieves a (1 — 1/e)
approximation guarantee.

5.2.1 Experiments with memory limit

Here we show the memory advantage of our GREEDYML algorithm w.r.t RANDGREEDI
with two experiments. In the first one, we impose a limit of 100 MB of space for each node
and vary k, the solution size. This also simulates how the new algorithm can find applications
in the edge-computing context. We also fix k and vary the memory limits, necessitating
different numbers of nodes to fit the data in the leaves. We observe the quality and runtime
of different accumulation tree structures in these two experiments. Both these experiments
are designed to show that the RANDGREEDI algorithm quickly runs out of memory with
increasing m and k, and by choosing an appropriate accumulation tree, our GREEDYML
algorithm can solve the problem with negligible drop in accuracy. For these experiments, we
will choose the shortest accumulation tree that can be used with the memory limit and k&
values.

Varying k. For this experiment, we use 16 machines with a limit on the available memory
of 100 MB per machine and vary k from 128,000 to 1,024,000 for the k-dominating set
problem on the road_usa [1] dataset. The small memory limit in this experiment can also
be motivated from an edge computing context.

The left plot in Figure 3 shows the number of function calls with varying values of k for the
GREEDY (green bars) and GREEDYML algorithms (blue bars). Note that when L =1 (the
left-most bar in the Figure), the GREEDYML algorithm corresponds to the RANDGREEDI
algorithm. For the GREEDYML (and the RANDGREEDI), we are interested in the number
of function calls in the critical path since it represents the parallel runtime of the algorithm.
With our memory limits, only & = 128,000 instances can be solved using the RANDGREEDI
algorithm.

As we increase k, we can generate solutions using our GREEDYML with different accu-
mulation trees. The corresponding lowest-depth accumulation tree with the number of levels
and branching factor is shown on top of the blue bars. The result shows that the number
of function evaluations on the critical path in the GREEDYML algorithm is smaller than
the number of function evaluations in the sequential GREEDY algorithm. While the number
of function calls for accumulation trees with smaller b values is larger than RANDGREEDI,
we see that GREEDYMUL can solve the problems with larger k values in the same machine
setup, which was not possible with RANDGREEDI. But it comes with a trade-off on parallel
runtime. We observe that as we make the branching factor smaller, the number of function
calls in the critical path increases, suggesting that it is sufficient to choose the accumulation
trees with the largest branching factor (thus the lowest depth tree) whenever the memory
allows it.

The right plot of Figure 3 shows the relative objective function value, i.e., the relative
number of vertices covered by the dominating set compared to the GREEDY algorithm, with
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Figure 3 Results from GREEDYML for the k-dominating set problem on the road__usa dataset on
16 nodes with varying k. The pair(L,b) shows the number of levels and branching factors chosen for
specific k values. The function values are relative to the GREEDY algorithm. Note that the leftmost
bars in both plots represent the RANDGREEDI results.

Table 2 Results for k-dominating set on the Friendster, road_ usa and webdocs datasets. The
memory size per machine is varied for the Friendster dataset. The number of machines m and the
accumulation tree are selected based on the size of the data and the size of the solutions to get three
different machine configurations. We report the function values relative to the GREEDY algorithm
and the execution time in seconds. Note that the 4GB entries run with L = 1 corresponding to the
RANDGREEDI (RG) algorithm. We use the same three machine organizations for the road usa and
webdocs datasets to show they follow similar trends in solution quality and execution time.

Dataset Alg.  Mem. Limit m b L  Rel. Func.(%) Time (s.)
RG 4GB 8§ 8 1 99.959 61.994
Friendster GML 2GB 16 4 2 99.903 61.352
GML 1GB 32 2 5 99.793 79.997
RG 8GB 8 8 1 99.257 121.318
MOLIERE_ 2016 GML 4GB 16 4 2 99.106 108.764
GML 2GB 32 2 5 98.990 161.139
RG  12GB 8§ 8 1 99.996 94.122
AGATHA_ 2015 GML 6GB 16 4 2 99.995 99.574
GML 3GB 32 2 5 99.989 104.156

varying k. The figure shows that the RANDGREEDI and GREEDYML algorithms attain
quality at most 6% less than the serial GREEDY algorithm. Similar trends can be observed
for other datasets.

Varying memory limits. This experiment demonstrates that the memory efficiency of
the GREEDYML algorithm enables us to solve problems on parallel machines, whereas
the RANDGREEDI and GREEDY cannot solve them due to insufficient memory. Unlike
the previous experiment (Varying k), where we selected the accumulation trees based
on k, here, we fix k and choose accumulation trees based on the memory available on the
machines. We consider the k-dominating set problem and report results on the Friendster [31],
AGATHA 2015[27], and MOLIERE 2016[26] dataset in Table 2. For the Friendster dataset,
we choose k such that the k-dominating set requires 512 MB, roughly a factor of 64 smaller
than the original graph. The RANDGREEDI algorithm (the first row) can execute this
problem only on 8 machines, each with 4 GB of memory, since in the accumulation step, one
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machine receives solutions of size 512 MB each from 8 machines. The GREEDYML algorithm,
having multiple levels of accumulation, can run on 16 machines with only 2 GB memory,
using L = 2 and b = 4. Furthermore, it can also run on 32 machines with only 1 GB memory,
using L = 5 and b = 2. We repeat the same experiment for the other two datasets with these
three machine configurations, with corresponding memory restrictions.

We show relative quality and running time for the three datasets from these configurations
in Table 2. Our results show that function values computed by the GREEDYML algorithm
(the 2 and 1 GB results) are insensitive to the number of levels in the tree. As expected,
increasing the number of levels in the accumulation tree increases the execution times due to
the communication and synchronization costs involved. However, aggregating at multiple
levels enables us to solve large problems by overcoming memory constraints. So, in this
scenario, it is sufficient to select the number of machines depending on the size of the dataset
and then select the branching factor such that the accumulation step does not exceed the
memory limits. We also notice that the RANDGREEDI algorithm has an inherently serial
accumulation step, and the GREEDYML algorithm provides a mechanism to parallelize it.

5.2.2 Selecting the Accumulation tree

Now we show how the accumulation tree may be chosen to reduce runtime (or a proxy, the
number of function calls in the critical path) when the number of machines is fixed.

In this experiment, we show results for the k-dominating set and k-coverage problem by
fixing the number of machines and varying branching factors, the number of levels in the
accumulation tree, and the solution size k.

In Figure 4, we provide summary results on the number of function evaluations in the
critical path relative to the GREEDY algorithm and the running times by taking a geometric
mean over all nine datasets.

Three subfigures (top left, top right, and bottom left) of Figure 4 show the ezecution
time in seconds for the GREEDYML and RANDGREEDI algorithms, as the number of levels
and the parameter k are varied. When k is small (top left), there is less variation in the
execution time since work performed on the leaves dominates overall time. As k increases
(bottom left), the GREEDYML algorithm becomes faster than the RANDGREEDI algorithm
(L =1,b = 32). Note that although Figure 4 presents the geometric mean results over all
nine datasets, the runtime and the function values for the individual datasets follow the same
trend. The largest and smallest reduction in runtime we observe is on the belgium_ osm and
kosarak datasets with a reduction of around 22% and 1%, respectively, for all k values.

The bottom right plot fixes k£ = 32,000 and shows the number of function calls in the
critical path of the accumulation tree relative to the GREEDY algorithm for different (L, b)
pairs. Here, the leftmost bar represents the RANDGREEDI algorithm. We observe that the
relative number of function calls for RANDGREEDI is around 70% of GREEDY, whereas the
GREEDYML (with L = 2 and b = 8) reduces it by 15 percent. From Table 5, the number of
function calls at a leaf node is O(nk/m), while at an accumulation node, it is O(mk?), for
the RANDGREEDI algorithm. Hence, the accumulation node dominates the computation
since it has a quadratic dependence on k, becoming a bottleneck for large k values. This
plot also shows that the number of function calls is a good indicator of the algorithm’s run
time and that the cost of function evaluations dominates the overall time. The other factor
affecting run time is communication costs, which are relatively small and grow with the
number of levels when k is very large.

We note (not shown in the figure) that generally the objective function values obtained
by the GREEDYML algorithm are not sensitive to the choice of the number of levels and the
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Figure 4 Geometric means of results from GREEDYML for k-dominating set (on road datasets)
and for k-cover (on set cover benchmarks) using 32 machines. Different L and b values represent
different accumulation tree configurations. The top and bottom left subfigures show execution times
for different k values and accumulation trees. The bottom right plot shows the geometric means of
the number of function calls in the critical path relative to the GREEDY algorithm for & = 32,000.

Table 3 Objective function values relative to the GREEDY algorithm at the first and final
accumulation steps for the Friendster dataset with selection size k = 1000 and m = 32. Recall that
L denotes the level of the root node, and b is the branching factor, in the accumulation tree.

Accumulation Step
L] b First Final
3 | 4 | 0.74111 | 0.99994
2 | 8 | 0.82971 | 1.00005
2 | 16 | 0.91965 | 0.99994
1 | 32 | 1.00003 | 1.00003

branching factors of the accumulation tree and differ by less than 1% from the values of the
RANDGREEDI algorithm. For the webdocs k-coverage problem, however, GREEDY quality is
about 20% higher than both the RANDGREEDI and GREEDYML.

In Table 3, we report the improvement in objective function value when accumulating
over multiple levels, over choosing to stop at level one of accumulation. We use the maximum
k-cover function for the Friendster dataset with & = 1000 for different branching factors at
the first and final accumulation levels. We observe that the objective values at the highest
accumulation level are not very sensitive to the tree parameters, contrary to their sensitivity
to the approximation ratio derived in Theorem 4.

5.2.3 Scaling results

Here we perform a strong scaling experiment to show how computation and communication
times vary for the RANDGREEDI and GREEDYML algorithms. For the latter algorithm, we
use the tallest accumulation tree by using a branching factor of two, thereby increasing the
number of accumulation steps. Our results will show that even though the RANDGREEDI
algorithm has a low asymptotic communication cost, it can become a bottleneck when scaled
to a large number of machines, and that our algorithm alleviates this bottleneck.
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Figure 5 Strong scaling results of the RANDGREEDI and GREEDYMUL algorithms for & = 50 on
Friendster dataset for the k-dominating set problem. We set b = 2 for the GREEDYML algorithm.

Next, we show how the GREEDYML algorithm alleviates the scaling bottlenecks of the
RANDGREEDI algorithm using the k-dominating set problem on the Friendster dataset. We
set the branching factor b = 2 for the GREEDYML algorithm since this has the highest
number of levels and, thus, the lowest approximation guarantee. We compare communication
and computation times against the RANDGREEDI algorithm from 8 to 128 machines with
k = 50.

In Figure 5, we plot the total execution time by stacking communication and computation
times for the two algorithms. For RANDGREEDI, the communication time scales poorly since
it increases linearly with the number of machines, O(km) (See Table 5). But, for GREEDYML
algorithm (with a constant branching factor, b = 2, L = log, m), the communication cost is
O(klogm), which grows logarithmically in the number of machines. Figure 5 shows that
the total communication times of the GREEDYML algorithm are consistently around 0.25
seconds, whereas the RANDGREEDI increases from 0.05 seconds to 0.2 seconds. We observe
that computation times for both RANDGREEDI and GREEDYML change similarly with
m, indicating that the majority of the computation work is performed at the leaf nodes.
For computation time, we observe a slightly worse scaling of RANDGREEDI compared to
GREEDYML, again because the central node becomes a computational bottleneck as m
increases. Similar to other experiments, we observe (not shown in the plot) an almost
identical quality in the solutions, where the GREEDYML solution has a quality reduced by
less than 1% from that of the RANDGREEDI algorithm.

5.2.4 The k-medoid problem

In this final subsection, we perform experiments for the k-medoid objective function (one that
is computationally more expensive than the others we have used here) and show that we can
provide a significant speedup by using taller accumulation trees without loss in quality. The
k-medoid function is extensively used in machine learning as a solution to exemplar-based
clustering problems.

Our dataset consists of the Tiny ImageNet dataset [18] containing 100K images (64 x 64
pixels) with 200 different classes, with 500 images from each class. We convert and normalize
the image into a vector and use Euclidean distance to measure dissimilarity. We define an
auxiliary vector ey as a pixel vector of all zeros. Note that, unlike the other two functions,

the k-medoid function requires access to the full dataset to compute the functional value.

Since the dataset is distributed, this poses an issue in the experiment. To overcome this,
following [23, 2], we calculate the objective function value using only the images available
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Table 4 Results from GREEDYML for the k-medoid function on the Tiny ImageNet data set using
32 machines organized into different accumulation trees. The table shows the relative function values
and speedup compared to the RANDGREEDI algorithm using two different schemes for computing
the local objective functions. Higher values are better for both schemes. Recall that L and b are the
number of levels and the branching factor, respectively.

L b Local Obj. Added Images
Rel. Func. Speedup Rel. Func. Speedup
Val. (%) Val. (%)

5 2 92.22 2.00 93.69 2.01

3 92.21 1.96 92.70 1.94

2 8 92.73 1.95 92.77 1.93

2 16 92.22 1.49 93.34 1.44

locally on each machine. This means the ground set for each machine is just the images
present in that machine. Additionally, they [23, 2] have also added subsets of randomly
chosen images to the central machine to provide practical quality improvement. We have
followed these techniques (local only and local with additional images) in the experiments for
our multilevel GREEDYML algorithm.

In our experiments, we set k to 200 images, fix the number of machines (m = 32), and
vary the accumulation trees by choosing different L and b. For the variant with additional
images, we add 1,000 random images from the original dataset to each accumulation step.

In Table 4, we show the relative objective function values and speedup for different
accumulation trees relative to the RANDGREEDI algorithm. We observe that the objective
function values for GREEDYML algorithm are almost similar to RANDGREEDI. Our results
show that the GREEDYML algorithm becomes gradually faster as we increase the number of
levels, with runtime improvement ranging from 1.45 — 2.01x. This is because the k-medoid
function is computationally intensive, where computation cost increases quadratically with
the number of images (Table 5). With k = 200 and m = 32, the RANDGREEDI algorithm
has km = 6,400 images at the root node but only n/m = 313 images at the leaves; thus,
the computation at the root node dominates in cost. On the other hand, as we decrease the
branching factor (from b = 16 to 2), the number of images (kb) in the interior nodes decreases
from 3,200 to 400 for the GREEDYML algorithm. This gradual decrease in compute time is
reflected in the total time and in the observed speedup.

Finally, in Fig. 6 (Appendix B), we show 16 out of the 200 images determined to be
cluster centers by the GREEDYML and RANDGREEDI algorithms. We can conclude that
the submodular k-medoid function can generate a diverse set of exemplar images for this
clustering problem.

6 Conclusion and Future work

We have developed a new distributed algorithm, GREEDYML, that enhances the existing dis-
tributed algorithm for maximizing a constrained submodular function. We prove GREEDYML
is a - b/(b+ m)-approximate, but empirically demonstrate that its quality is close to the
best approximation algorithms for several practical problems. Our algorithm alleviates the
inherent serial computation and communication bottlenecks of the RANDGREEDI algorithm
while reducing memory requirements. This enables submodular maximization to be applied
to massive-scale problems effectively.
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Future work could experiment with other hereditary constraints, such as matroid and

p-system constraints. Another direction is to apply GREEDYML to closely related non-
monotone and weakly submodular functions. Since our experiments suggest that GREEDYML
delivers higher quality solutions than the expected approximation guarantees, one could

investigate whether the approximation ratio could be improved.
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A  Submodular Functions and Complexity

Our algorithm can handle any hereditary constraint, but we consider only cardinality
constraints in our experiments to keep the run times low. More general constraints involve
additional computations to check if an element can be added to the current solution set and
satisfy the constraints. They increase the computation time but not the communication
time, and we belive the GREEDYML algorithm will perform even better relative to the
RANDGREEDI algorithm. Cardinality constraints are widely used in various applications
such as sensor placement [16], text, image, and document summarization [19, 20], and
information gathering [15]. The problem of maximizing a submodular function under
cardinality constraints can be expressed as follows.

S
Smg/ f(S)
s.t. |S] < k.

Here V is the ground set, f is a non-negative monotone submodular function, and & is the
size of the solution set S.
In our experiments, we have considered the following three submodular functions.

k-cover. Given a ground set B, a collection of subsets V C 28, and an integer k, the goal
is to select a set S C V' containing k of these subsets to maximize f(S5) = [Ug,cg Sil-

k-dominating set. The k-dominating set problem is a special case of the k-cover problem
defined on graphs with the ground set V' as the set of vertices. We say a vertex u € V
dominates all its adjacent vertices (denoted by §(u)). Our goal is to select a set S of k
vertices to dominate as many vertices as possible, i.e., f(S) = |U,cg d(u)|. The marginal

gain of any vertex is the number of vertices in its neighborhood that are not yet dominated.

Therefore, the problem shows diminishing marginal gains and is submodular.

k-medoid problem. The k-medoid problem [12] is used to compute exemplar-based clustering,
which asks for a set of exemplars (cluster centers) representatives of a large dataset. Given
a collection of elements in a ground set V, and a dissimilarity measure d(u,v), we define a
loss function (denoted by L) as the average pairwise dissimilarity between the exemplars
(S) and the elements of the data set, i.e., L(S) = 1/|v|}_, oy minyes d(u,v). Following [23],
we turn this loss minimization to a submodular maximization problem by setting f(S) =
L({eo} — L(S U {eo}, where e is an auxiliary element specific to the dataset. The goal is to
select a subset S C V of size k that maximizes f(S).

Next, we analyze the computational and communication complexity of our GREEDYML

algorithm using the bulk synchronous parallel (BSP) model of parallel computation [30].

We denote the number of elements in the ground set by n = |V|,the solution size by k, the
number of machines by m, and the number of levels in the accumulation tree by L.
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Computational Complexity. The number of objective function calls by the sequential
GREEDY algorithm is O(nk), since k elements are selected to be in the solution, and we may
need to compute O(n) marginal gains for each of them. Each machine in RANDGREEDI
algorithm makes O(k(n/m + mk)) function calls, where the second term comes from the
accumulation step. Each machine of the GREEDYML algorithm with branching factor b
makes O(k(n/m + Lbk)) calls. Recall that L = [log, m].

We note that the time complexity of a function call depends on the specific function being
computed. For example, in the k-coverage and the k-dominating set problems, computing
a function costs O(d), where ¢ is the size of the largest itemset for k-coverage, and the
maximum degree of a vertex for the vertex dominating set. In both cases, the runtime
complexity is O(dk(n/m + mk)) for the RANDGREEDI, and O(dk(n/m + Lbk)) for the
GREEDYML algorithm. The k-medoid problem computes a local objective function value
and has a complexity of O(n'd) where ¢ is the number of features, and n’ is the number
of elements present in the machine. For the leaves of the accumulation tree, n’ = n/m,
and for interior nodes, n’ = bk. Therefore its complexity is O(kd((n/m)? + (mk)?)) for the
RANDGREEDI, and O(kd((n/m)? + L(bk)?)) for the GREEDYML algorithm.

Communication Complexity. FEach edge in the accumulation tree represents communication
from a machine at a lower level to one at a higher level and contains four messages. They are
the indices of the selected elements of size k, the size of the data associated with each selection
(proportional to the size of each adjacency list (< d), the total size of the data elements,
and the data associated with each selection. Therefore the total volume of communication
is O(kd) per child. Since at each level, a parent node receives messages from b children,
the communication complexity is O(kdLb) for each parent. Therefore the communication
complexity for the RANDGREEDI algorithm is O(kdém) and for the GREEDYML algorithm
is O(kSL [m'/L]). We summarize these results in Table 5.

Table 5 Complexity Results of the submodular functions for different algorithms. The number
of elements in the ground set is n, the selection size is k, the number of machines is m, and the
number of levels in the accumulation tree is L.

Algorithms ‘ Metric ‘ GREEDY RANDGREEDI GREEDYML
Elements per leaf node n n/m n/m
Calls per leaf node nk nk/m nk/m
All Elements per interior node 0 km k |—m1/L
Calls per interior node 0 k?m k2 ’—ml/q
Total Function Calls kn k(n/m + km) k(n/m + Lk (ml/]“—‘ )
d: subset size/number of neighbours
k_COVOF / . Cost Per call 5 5 5
k-dominating . .
set Computational complexity Okn Ok(n/m + km) O0k(n/m + Lk (ml/L])
Communication cost 0 okm O0kL (ml/L—‘
0: number of features
Cost Per call in Leaf node on on/m on/m
k-medoid Cost Per call in interior node 0 okm ok [ml/L“
Computational complexity Skn? Sk((n/m)? + (km)?)  Sk((n/m)?® + L(k ( nl/L—‘ )?)

7
Communication cost 0 okm OkL "ml/L-‘
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Table 6 Notations and parameters used in the paper.

Parameter ‘ Description H Parameter ‘ Description
a Approximation ratio of the GREEDY algorithm w Complete universe for the input dataset
b Branching factor of the accumulation tree w Size of the universe W
Number of leaves in the accumulation tree \%4 Input Dataset
n Numbers of machines used for computation. n Size of the input dataset V'
L Number of levels of the accumulation tree Ve Dataset corresponding to any node c of the tree
l level identifier for a node S Solution Set
id Machine identifier for a node. k Size of solution
f Submodular function OoPT The optimal solution
f Lovész extension of function f Probability that e € OPT is selected
P; Part of the dataset assigned to machine id ple) by the GREEDY algorithm when sampled from V.
B Cluster Centers (Images) selected by GREEDYML and

RANDGREEDI algorithms

Figure 6 Results from GREEDYML for the k-medoid problem on the Tiny ImageNet dataset
on 32 nodes with £ = 200, and no images added at each accumulation step. The subfigure on
the left shows the top 16 images for one of the runs of the GREEDYML algorithm with branching
factor b = 2, and the subfigure on the right shows the top 16 images for one of the runs of the

RANDGREEDI algorithm.

19:21

SEA 2025



	1 Introduction
	2 Background and Related Work
	2.1 Submodular functions
	2.2 Related Work

	3 Description of Our Algorithm
	3.1 Data Structure and Preliminaries
	3.2 Pseudocode of  GreedyML

	4 Analysis of Our Algorithm
	5 Experimentation
	5.1 Experimental setup
	5.2 Experimental Results
	5.2.1 Experiments with memory limit
	5.2.2 Selecting the Accumulation tree
	5.2.3 Scaling results
	5.2.4 The k-medoid problem


	6 Conclusion and Future work
	A Submodular Functions and Complexity
	B Cluster Centers (Images) selected by GreedyML and RandGreeDI algorithms

